TEST REVIEW - GEOMETRY

Polygons: A 2-dimensional closed figure made up of line segments.

Triangle: 3 sides
Quadrilateral: 4 sides

Pentagon: 5 sides
Hexagon: 6 sides

Heptagon: 7 sides
Octagon: 8 sides
Nonagon: 9 sides
Decagon: 10 sides

Regular polygon: a polygon with congruent sides and angles
Prisms: a 3-D solid with congruent parallel faces
Pyramids: a 3-D solid whose base is a polygon that connects to a point called an apex.

Quadrilateral Types:

Square: A quadrilateral with four congruent sides and four 90° angles
Rectangle: A quadrilateral with two pairs of parallel lines and four 90° angles
Rhombus: A quadrilateral with four congruent sides and opposite angles equal
Parallelogram: A quadrilateral with 2 pairs of parallel sides (includes a square, rectangle, and rhombus)

Trapezoid: A quadrilateral with exactly one pair of parallel lines
Sum of degrees in a quadrilateral $=360^{\circ}$

Area and Perimeter

Perimeter of Polygons: Sum of sides
Area of a triangle: (Base x height) $\div 2$
Area of parallelogram: base x height
Area of Trapezoid: [(base + base) x height] $\div 2$

Triangle Types:

Acute Triangle: a triangle with all angles less than 90°
Right Triangle: a triangle with one 90° angle
Obtuse Triangle: a triangle with one angle greater than 90°
Scalene Triangle: a triangle with no congruent side lengths
Isosceles Triangle: a triangle with two or more congruent side lengths
Equilateral Triangle: a triangle with 3 congruent side lengths
Triangle inequality: The sum of the two shorter lengths of a triangle must be greater than the longest side (ex: $5 \mathrm{~cm}, 6 \mathrm{~cm}, 8 \mathrm{~cm}$ works because $5+6>8$)

Sum of degrees in a triangle $=180^{\circ}$

Circles and Spheres

Area of a circle $=\pi r^{2}$
Circumference of a circle $=\pi d$
Surface Area of a sphere $=4 \pi r^{2}$

Volume and Surface Area of Prisms

Surface Area: sum of area of faces
Volume: area of base x height

Angles

Adjacent Angles: angles beside each other that have a common side and common vertex
Vertical angles: angles opposite other when two lines cross (congruent measures)
Complementary Angles: Two angles that have a sum of 90°
Supplementary Angles: Two angles that have a sum of 180°

Cross Sections:

A cross section is the two dimensional shape you get when cutting through a 3-D solid. Be sure to understand horizontal, vertical, and diagonal cross sections. (Remember the Play-doh Lab?)

Lastly, be sure you can measure and construct angles, triangles, and quadrilaterals with a protractor.

